Skip to content

Instantly share code, notes, and snippets.

@bhchiang
Created March 27, 2021 06:40
Show Gist options
  • Save bhchiang/259e7e54bb769e0711c8caeddcf31296 to your computer and use it in GitHub Desktop.
Save bhchiang/259e7e54bb769e0711c8caeddcf31296 to your computer and use it in GitHub Desktop.
Deformable convolution implementation in JAX
import time
from typing import Tuple, Union
import jax
import jax.profiler
from flax import linen as nn
from IPython import embed
from jax import numpy as jnp
class DeformableConv(nn.Module):
"""Deformable 2D convolution implementation.
"""
filters: int
kernel_size: Tuple
strides: Tuple = (1, 1)
kernel_dilation: Tuple = (1, 1)
padding: Union[str, Tuple] = 'VALID'
num_deform_groups: int = 1
def setup(self):
if self.filters % self.num_deform_groups != 0:
raise ValueError(
"\"filters\" mod \"num_deform_groups\" must be zero.")
if self.padding != "VALID":
raise NotImplementedError(
f"Padding mode \"f{self.padding}\" has not been implemented yet."
)
self.filter_h, self.filter_w = self.kernel_size
if self.filter_h % 2 == 0 or self.filter_w % 2 == 0:
raise NotImplementedError(
f"Even \"kernel_size\" is not supported.")
# Multiply by 2 for x, y offsets
self.offset_num = self.filter_h * self.filter_w * self.num_deform_groups * 2
# Manual unwrapping to avoid tracing
self.pad_y = self.filter_h // 2
self.pad_x = self.filter_w // 2
self.dilation_y, self.dilation_x = self.kernel_dilation
self.dilated_filter_h = self.dilation_y * self.pad_y * 2 + 1
self.dilated_filter_w = self.dilation_x * self.pad_x * 2 + 1
self.dilated_pad_y = self.dilated_filter_h // 2
self.dilated_pad_x = self.dilated_filter_w // 2
self.stride_y, self.stride_x = self.strides
# Kernel indices
kernel_ys = jnp.arange(-self.dilated_pad_y, self.dilated_pad_y + 1,
self.dilation_y)
kernel_xs = jnp.arange(-self.dilated_pad_x, self.dilated_pad_x + 1,
self.dilation_x)
self.kernel_us, self.kernel_vs = jnp.meshgrid(kernel_xs, kernel_ys)
@nn.compact
def __call__(self, volume):
"""volume represents correlation between two 3D cost volumes.
N x H x W x C
N is the batch size, H x W are the spatial dimensions, and C is the number of channels
= maximum disparity (D) representing the number of disparity candidates.
"""
# Generate offsets
offsets = nn.Conv(features=self.offset_num,
kernel_size=self.kernel_size,
strides=self.strides,
padding=self.padding,
kernel_dilation=self.kernel_dilation)(volume)
batch_size, in_h, in_w, channel_in = volume.shape
_, out_h, out_w, *_ = offsets.shape
offsets = jnp.reshape(
offsets, (batch_size, out_h, out_w, -1, 2, self.num_deform_groups))
offsets = jnp.reshape(
offsets, (batch_size, out_h, out_w, -1, 2, self.num_deform_groups))
# Convolution indices
ys = jnp.arange(self.dilated_pad_y, in_h - self.dilated_pad_y,
self.stride_y)
xs = jnp.arange(self.dilated_pad_x, in_w - self.dilated_pad_x,
self.stride_x)
# assert len(ys) == out_h
# assert len(xs) == out_w
us, vs = jnp.meshgrid(xs, ys)
def _wrap(_volume, _image_offsets):
"""
_image_offsets = (out_h, out_w, filter_h * filter_w, 2)
"""
def _retrieve(y, x, _kernel_offsets):
"""
_kernel_offsets = (filter_h * filter_w, 2)
"""
def _pixel(_y, _x, _pixel_offset):
"""Retrieve offset pixel values
_pixel_offset = (2, )
"""
dy, dx = _pixel_offset
_rx, _ry = _y + dy, _x + dx
x0, y0 = jnp.array((_rx, _ry), jnp.int32)
x1, y1 = x0 + 1, y0 + 1
# Clip to the bounds of the input image
y0, y1 = jnp.clip(jnp.array([y0, y1]),
a_min=0,
a_max=in_h - 1)
x0, x1 = jnp.clip(jnp.array([x0, x1]),
a_min=0,
a_max=in_w - 1)
# Get pixels
p0 = _volume[y0, x0]
p1 = _volume[y0, x1]
p2 = _volume[y1, x0]
p3 = _volume[y1, x1]
# Do bilinear interpolation for each one (could be vectorized)
w0 = (y1 - _ry) * (x1 - _rx) # y0, x0
w1 = (y1 - y) * (_rx - x0) # y0, x1
w2 = (_ry - y0) * (x1 - _rx) # y1, x0
w3 = (_ry - y0) * (_rx - x0) # y1, x1
# embed()
return jnp.sum(jnp.array(
[p0 * w0, p1 * w1, p2 * w2, p3 * w3]),
axis=0)
_kernel_offsets = jnp.reshape(
_kernel_offsets, (self.filter_h, self.filter_w, 2))
# embed()
# _pixel(kernel_vs[0, 0], kernel_us[0, 0], _kernel_offsets[0, 0])
return jax.vmap(jax.vmap(_pixel))(self.kernel_vs,
self.kernel_us,
_kernel_offsets)
# embed()
# _retrieve(vs[10, 0], us[10, 0], _image_offsets[10, 0])
pixels = jax.vmap(jax.vmap(_retrieve))(vs, us, _image_offsets)
return pixels
# _volume = volume[0]
# _offsets = offsets[0, ..., 0]
# y = _wrap(_volume, _offsets)
def _batch_wrap(_volume, _offsets):
# (2) Map over num_deform_groups dimension for offsets
return jax.vmap(_wrap, in_axes=(None, -1), out_axes=(-1))(_volume,
_offsets)
# y = _batch_wrap(volume[0], offsets[0])
# embed()
# (1) Map over batch dimension for volume, offsets
pixels = jax.vmap(_batch_wrap)(volume, offsets) # Batch
# embed()
"""pixels are our pixel offsets for each image and deformable group.
pixels.shape = [batch_size, out_h, out_w, filter_h, filter_w, channel_in, num_deform_groups]
"""
_pixels = pixels.transpose([0, 1, 3, 2, 4, 5, 6])
_pixels = jnp.reshape(
_pixels, (batch_size, out_h * self.filter_h, out_w * self.filter_w,
self.num_deform_groups, channel_in))
# Verify big feature reshape working correctly
# _a = pixels[0, 0, 0, :5, :5, 0, 0]
# _b = _pixels[0, :5, :5, 0, 0]
# embed()
# _pixels contains a set of offset pixels (depth = channel_in), one for each self.num_deform_group.
# We need to repeat each set of offset pixels by the size of each deformable group (features_per_group).
features_per_group = self.filters // self.num_deform_groups
# _pixels[batch, y, x, group_num, :] will now be of length features_per_group * channel_in
_pixels = jnp.tile(_pixels, (1, 1, 1, 1, features_per_group))
# Flatten the last axis
_pixels = jnp.reshape(
_pixels,
(batch_size, out_h * self.filter_h, out_w * self.filter_w, -1))
# Perform depth-wise convolution
out_filters = self.filters * channel_in
out = nn.Conv(features=out_filters,
kernel_size=self.kernel_size,
feature_group_count=channel_in,
strides=(self.filter_h, self.filter_w),
padding=self.padding)(_pixels)
out = out.reshape((batch_size, out_h, out_w, self.filters, channel_in))
out = jnp.sum(out, axis=-1)
return out
# embed()
if __name__ == "__main__":
server = jax.profiler.start_server(9999)
print("Starting profiling server")
x_k, m_k = jax.random.split(jax.random.PRNGKey(0), 2)
# N x H x W x C
# C = D (maximum disparity)
x = jax.random.uniform(x_k, (100, 64, 32, 10))
model = DeformableConv(filters=32,
kernel_size=(5, 5),
num_deform_groups=2,
kernel_dilation=(4, 2))
variables = model.init(m_k, x)
# @jax.jit
def apply(variables, x):
y = model.apply(variables, x)
return y
time.sleep(5)
print("Starting")
time.sleep(5)
y = apply(variables, x)
# embed()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment